在机械设计中,我们经常用到步进电机。
比如,用步进电机驱动同步带轴,实现直线运动。
再比如,用步进电机驱动滚珠丝杠轴,也可以把旋转运动转换为直线运动。
因为不需要反馈系统,所以步进电机的最大优点是,低成本下可以获得不错的精度。
其实,除了机器中的运动平台,生活中也可以发现步进电机的存在。
比如打印机,扫描仪,相机,ATM机,3D打印机等等。
步进电机的应用(不包括图中机器人)
那么,步进电机的原理是什么?
用一句话来说就是:给定子中的一组或多组线圈轮流通电,线圈中的电流产生磁场,转子为了寻找新的平衡位置,自动调整它的位置,对其磁场,从而实现运动。
你可能会说,所有电机都是这个原理,哈,没错,那么关于具体细节,我们后面慢慢用图来说。
其实此前,我对步进电机的原理了解得也不是很多,不过最近好像对各类电机有点上瘾,所以特地多了解了一些,毕竟,我们时时刻刻都会和电机打交道。
了解了之后,这不趁今天周末,我就来分享一下。
但是因为我不是做电机的,所以若有不妥,或者不完善之处,还希望业内人士能够在留言区指出,补充。
今天的主要内容包括:步进电机的种类,构造,原理,步进电机的满步半步微步控制方法,步进电机的速度扭矩特性,以及步进电机的优缺点等。
1.步进电机的类型
和其他类型的电机一样,步进电机也是由定子和转子构成。
在步进电机中,定子主要负责产生磁场,转子负责跟随磁场。
定子的主要特征包括相数,磁对数,以及线圈配置。
相数是独立线圈的数目,而磁对数表示每一相会产生多少对磁场。
2相步进电机是最常使用的,而3相,5相不常用。
左图是2相步进电机,右图是3相步进电机定子示意图
左图是2相单磁对数定子,右图是2相偶磁对数定子,字母N和S表示当A+和A-通电时,定子产生的磁场。
因为步进电机的构造会影响步距,速度,扭矩,以及控制方式。
所以,接下来我先说说几种不同步进电机的构造。
它们的区别主要在于转子是怎么做的。
(1)永磁式转子(Permanent Magnet=PM)
第一种,永磁式转子,这种是最简单,也是最便宜的。
它的结构如下图,中间的转子是用永磁铁做成。
当定子线圈通电产生磁场,转子磁铁自动对齐磁场,跟随旋转。
永磁式转子步进电机
线圈通电,中间转子自动对齐线圈产生的磁场(图片来自Microchip)
线圈通电,中间转子自动对齐线圈产生的磁场(图片来自Faulhaber)
这种结构,因为是用磁铁做转子,磁铁磁通量大,进而扭矩大,所以保证了较好的输出扭矩和制动扭矩。
所谓制动扭矩(Detent Torque),就是说,无论线圈是否通电,电机都会阻止旋转,这是因为永磁铁和定子之间的相互作用,会产生一定的扭矩,外力必须克服这个扭矩,电机才能动起来。
在电机生产厂家的产品目录中,有的也写为齿槽转矩(Cogging Torque),或者残余扭矩(Residual Torque)。
当然,有优势也就有劣势。
这种结构的不足之处在于,它的转速和步距(分辨率)不高,比如一步转动7.5°-15°,当然好处是体积可以做得很小,比如Φ20mm以下。
(2)可变磁阻式步进电机(Variable Reluctance=VR)
可变磁阻式步进电机结构