自动驾驶,已经确定将是我们未来交通的主要承载方式。我们也知道,在通往自动驾驶的道路上,电动是唯一的选择,但是电动车具体如何完美实现自动驾驶,争议很大。
我们的判断是,未来的自动驾驶,一定有轮毂电机一席之地。
轮毂电机,就是将一个电机整合到汽车轮毂内,使汽车轮毂具有动力、传动和制动功能,成为一个独立的动力单元。
轮毂电机是实现电动汽车分布式驱动的核心技术,分布式驱动的意义,号称“中国轮毂电机第一人”吕超的这么总结,“这如同乔布斯认为点击屏幕一定要用手指,而不是用触屏笔一样,是最直接、最高效的驱动方式。”
电动车的驱动方式有两种,集中式和分布式。其中分布式驱动又分为轮边电机驱动和轮毂电机驱动。集中式,就是现在绝大部分电动车的驱动方式,电机放置在底盘上,通过传动轴驱动车轮运转,通常一个电机驱动两个车轮或者作为整车四个车轮的动力来源。轮边驱动属于分布式驱动,一个电机驱动一个车轮,但是电机并没有集成到车轮内,而是通过传动电机输出轴连接到车轮上。
轮毂电机驱动则是将电机集成到车轮内,彻底实现车轮自驱动,是分布式驱动的最终形式。
关于分布式驱动,还有内转子和外转子的方案,电机具体还有永磁同步、交流异步电机等等不同的选择,相关的技术路径我们今天不再赘述。我们要确定的问题在于,为什么说,通过轮毂电机实现的分布式驱动,是自动驾驶的终极解决方案呢?
因为自动驾驶需要汽车能够实现足够多的运动方式,只有分布式驱动能够完成这一点。
分布式驱动实现了四个车轮每个车轮的单独控制,每个车轮都可以做出360度的运动,可以完成你能想象到的,一个四方体的盒子在平面上所能实现的所有动作轨迹。
只有实现分布式驱动,才能够将机械的复杂度等量代换为代码的复杂度,用降维思路解决自动驾驶问题,将人从驾驶这种重复性劳动中彻底解放出来。
用机械实现一个单独的功能并不难,但在一个机械平台上实现多个功能,其复杂度就会有指数性的上升。我们数学上典型的解题思路是“升维思考,降维解题”,就是用更高的维度去理解问题,看透事物的本质,把事物分解成最基本的组成,然后用降维的方法来解决问题,化复杂为简单。这个升维的思路,也就是马斯克常说的“第一性原理”。
用纯机械来实现组合机械功能难度异乎寻常的大,那不妨换一条路径。用代码生成控制软件,通过操作电机驱动机械来实现各种机械功能。这样就将复杂的机械功能转换变成几行代码的写作,难度下降了N个数量级。
代码与机械功能之间的连接,就是电机。因为电机可以用非常小的误差实现机械功能,以我们常用的17位伺服电机为例,用脉冲来控制电机运动,每131072个脉冲转一圈,也就是最小精度是360/131072=0.0027度,定位误差可以达到0.001毫米。
这是一个代码改变世界的时代。代码驱动电机,电机带动机械,这个冰冷的世界就这么变得眉清目秀了起来。